Aerosol chemical composition and source characterization during 2008 VOCALS REx #### -Preliminary Results- Y.-N. Lee, S. Springston, J. Jayne, J. Wang, J. Hubbe, G. Senum, L. Alexander, L. Kleinman, P. Daum DOE ASP Science Meeting Santa Fe, New Mexico, February 25-27, 2009 - VOCALS SEP REx: Scientific Program Overview - Hypothesis 1c: The small effective radii measured from space over the SEP are primarily controlled by anthropogenic, rather than natural, aerosol production, and that entrainment of polluted air from the lower free-troposphere is an important source of cloud condensation nuclei (CCN). ## Goal: To identify the sources of these particles by measuring the key tracer constituents #### Natural: - sulfate and methanesulfonate from ocean-emitted DMS - dust from arid land in the region - sea-salt #### Anthropogenic: - power plants and smelters - urban emissions - Agricultural activities # AMS and PILS-IC were deployed on the DOE G-1 to determine aerosol chemical composition and source identification (PTR-MS was used for determining VOC and DMS) | | MARINE | | TERRESTRIAL | | | |--|---------------------------|---|------------------------------------|---|---| | Technique | Sea-Salt | DMS
products | Agriculture,
Biomass
Burning | Urban,
Power plants,
Smelters | Dust | | PILS-IC
(0.08 μm – 1.5 μm,
bulk; 3.0 min) | <i>Na</i> +, Cl⁻,
Mg²+ | CH ₃ SO ₃ -,
SO ₄ ²⁻ | K +, NH ₄ + | NO ₃ -, SO ₄ ² ,
NH ₄ + | Ca²⁺ , (NaNO ₃) | | cToF-AMS
(0.06 µm– 0.6 µm,
size-resolved; 20
sec) | | CH ₃ SO ₃ -,
SO ₄ ²⁻ | NH ₄ ⁺ , Org | NO ₃ -, SO ₄ ² ,
NH ₄ +, Org | | #### **Preliminary Data** MBL aerosol chemical composition observed on the flight of 10/28/2008 show: - SO_4^{2-} dominated, decreasing with distance from land - NaCl was comparable to SO₄²- away from the coast - Organics, NO₃-, and NH₄+ were minor, all less than 10% of SO₄²⁻ - $CH_3SO_3^-$ was only occasionally observed, but always below 0.1 μ g/m³ - **K**⁺ and Ca²⁺ were nearly always below 0.15 μg/m³ ### SO₄²⁻ aerosols were strongly acidic and externally mixed with the modified sea-salt particles ## Org, NH₄⁺, and NO₃⁻ were correlated with SO₄²-, suggesting common source attributes and terrestrial origin The altitude dependent slopes above are consistent with the facts: - •Sea-salt particles on which NO₃-deposits are externally mixed with SO₄²-aerosols - •Sea-salt particles have a stronger vertical gradient than SO_4^{2-} particles ### Aerosol properties inferred from comparing mass concentrations with DMA and PCASP volumes - Tight correlation below suggests the D_{p} of nss-aerosol particles were smaller than ${\sim}0.45~\mu m.$ - The near unity slop indicates DMA volume included the water present in SA aerosols (cf. DMA RH = ~13-16% at which the corresponding H₂SO₄ growth factor is ~1.2). - A strong correlation between mass concentration and PCASP volume, especially for sea-salt containing particles, gives no indication of missing mass due to dust particles (for $D_p < \sim 1.5 \mu m$). #### **Tentative Conclusions** - MBL aerosol was dominated by sulfuric acid (SA) and sea-salt (SS) aerosol particles, which were found externally mixed. - SA aerosols are anthropogenic because of - a land-water concentration gradient - good correlation with organics and NO₃⁻ - limited contributions from DMS based on low concentrations of CH₃SO₃⁻ and DMS - SA aerosol sizes are small with D_p < ~0.5 μm - SS particles were acidified by HNO₃ as well as H₂SO₄ showing Cl⁻ deficits. - No indication of appreciable dust particles with $D_p < 1.5 \mu m$. #### NOT so tentative: - Knowledge of aerosol chemical composition is needed for understanding: - CCN properties - Aerosol direct radiative effects Both of which require good size information which in turn depends on chemical information - Aerosol-cloud interactions - Chemical transport and source attributions